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• Lagrangian descriptors (LDs)

• Smaller Alignment Index (SALI)

• Chaos diagnostics based on LDs:

✓ the difference of LDs of neighboring orbits

✓ the ratio of LDs of neighboring orbits

✓ a quantity related to the finite-difference second spatial derivative of LDs

• Applications: 

✓ Hénon – Heiles system

✓ 2D Standard map 

✓ 4D Standard map

• Summary



Lagrangian descriptors (LDs)

The computation of LDs is based on the accumulation of some positive 

scalar value along the path of individual orbits. 

Consider an N dimensional continuous time dynamical system

ሶ𝒙 =
𝒅𝒙(𝒕)

𝒅𝒕
= 𝒇(𝒙, 𝒕)

The Arclength Definition [Madrid & Mancho, Chaos (2009) – Mendoza & 

Mancho, PRL (2010) – Mancho et al., Commun. Nonlin. Sci. Num. Simul. 

(2013)].

Forward time LD:

𝑳𝑫𝒇(𝒙, 𝝉) =  න
𝟎

𝝉

ሶ𝒙(𝒕) 𝒅𝒕

Backward time LD:

𝑳𝑫𝒃(𝒙, 𝝉) =  න
−𝝉

𝟎

ሶ𝒙(𝒕) 𝒅𝒕

Combined LD:

𝑳𝑫 𝒙, 𝝉 = 𝑳𝑫𝒃 𝒙, 𝝉 + 𝑳𝑫𝒇(𝒙, 𝝉)



LDs: 1 degree of freedom (dof) Hamiltonian

The system has a hyperbolic fixed point at the origin. The LDs can be used to 

display the stable and unstable manifolds of this point. 
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From Agaoglou et al. ‘Lagrangian descriptors: Discovery and quantification of phase space structure and transport’, 2020, https://doi.org/10.5281/zenodo.3958985 



LDs: 1 dof Duffing Oscillator

The system has three equilibrium points: a saddle located at the origin and 

two diametrically opposed centers at the points ( ± 1, 0).

From Agaoglou et al. ‘Lagrangian descriptors: Discovery and quantification of phase space structure and transport’, 2020, https://doi.org/10.5281/zenodo.3958985 

L
D

The location of the stable and unstable manifolds can be extracted from the 

ridges of the gradient field of the LDs since they are located at points where 

the forward and the backward components of the LD are non-differentiable. 



Lagrangian descriptors (LDs)
The ‘p-norm’ Definition [Lopesino et al., Commun. Nonlin. Sci. Num. 

Simul. (2015) – Lopesino et al., Int. J. Bifurc. Chaos (2017)].

Combined LD (usually p=1/2):

𝑳𝑫(𝒙, 𝝉) = න
−𝝉

𝝉

෍
𝒊=𝟏

𝑵

𝒇𝒊(𝒙, 𝒕) 𝒑 𝒅𝒕

Hénon-Heiles system:  𝑯 =
𝟏

𝟐
𝒑𝒙
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𝟏
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Stable and unstable manifolds for H=1/3, τ=10.

From Agaoglou et al. ‘Lagrangian descriptors: Discovery and quantification of phase space structure and transport’, 2020, https://doi.org/10.5281/zenodo.3958985 



Maximum Lyapunov Exponent (MLE)

Roughly speaking, the MLE of a given orbit characterizes the mean exponential 

rate of divergence of trajectories surrounding it. 

Chaos: sensitive dependence on initial conditions. 

Consider an orbit in the 2N-dimensional phase space with initial condition x(0) 

and an initial deviation vector (small perturbation) from it v(0). 

Then the mean exponential rate of divergence is: 

MLE= 𝝀𝟏 = lim
𝒕→∞

𝚲 (𝒕) = lim
𝒕→∞

𝟏

𝒕
ln

𝒗(𝒕)

𝒗(𝟎)

λ1=0 → Regular motion (𝚲 ∝ 𝒕−𝟏)

λ1>0 → Chaotic motion



The Smaller Alignment Index 

(SALI)
Consider the 2N-dimensional phase space of a conservative dynamical 

system (symplectic map or Hamiltonian flow). 

An orbit in that space with initial condition :

P(0)=(x1(0), x2(0),…,x2N(0))

and a deviation vector 

v(0)=(δx1(0), δx2(0),…, δx2N(0))

The evolution in time (in maps the time is discrete and is equal to the 
number n of the iterations) of a deviation vector is defined by:

•the variational equations (for Hamiltonian flows) and

•the equations of the tangent map (for mappings) 



Definition of the SALI

We follow the evolution in time of two different initial 

deviation vectors (v1(0), v2(0)), and define SALI [S., J. 

Phys. A (2001) – S & Manos, Lect. Notes Phys. (2016)] as:

When the two vectors become collinear

SALI(t) → 0

SALI(𝒕) = 𝒎𝒊𝒏 ෝ𝒗𝟏(𝒕) + ෝ𝒗𝟐(𝒕) , ෝ𝒗𝟏(𝒕) − ෝ𝒗𝟐(𝒕)

ෝ𝒗𝟏(𝒕) =
𝒗𝟏(𝒕)

𝒗𝟏(𝒕)

where



SALI – Hénon-Heiles system

For E=1/8 we consider the orbits with initial conditions:

Regular orbit, x=0, y=0.55, px=0.2417, py=0

Chaotic orbit, x=0, y=-0.016, px=0.49974, py=0

Chaotic orbit, x=0, y=-0.01344, px=0.49982, py=0

As an example, we consider the 2D Hénon-Heiles system:

𝑯 =
𝟏

𝟐
𝒑𝒙

𝟐 + 𝒑𝒚
𝟐 +

𝟏

𝟐
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𝟏

𝟑
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SALI – Hénon-Heiles system

y

py



Applications – 2D map
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For ν=0.5 we consider the orbits:

regular orbit A with initial conditions x1=2, x2=0.

chaotic orbit B with initial conditions x1=3, x2=0.

S., J. Phys. A (2001)



Behavior of the SALI

2D maps

SALI→0 both for regular and chaotic orbits 

following, however, completely different time rates which 

allows us to distinguish between the two cases.

Hamiltonian flows and multidimensional maps

SALI→0 for chaotic orbits

SALI→constant ≠ 0 for regular orbits



Using LDs to quantify chaos

Hillebrand et al., Chaos (2022) – Zimper et al., Physica D (2023) 

We consider orbits on a finite grid of an n(≥1)-dimensional subspace of the 

N(≥n)-dimensional phase space of a dynamical system and their LDs. 

Any non-boundary point x in this subspace has 2n nearest neighbors 

𝒚𝒊
± = 𝒙 ± 𝝈(𝒊)𝒆(𝒊), 𝒊 = 𝟏, 𝟐, … , 𝒏,

where 𝒆(𝒊) is the ith usual basis vector in ℝ𝒏 and 𝝈(𝒊) is the distance between 

successive grid points in this direction.

The difference 𝑫𝑳
𝒏 of neighboring orbits’ LDs:

𝑫𝑳
𝒏(𝒙) =

𝟏

𝟐𝒏
෍

𝒊=𝟏

𝒏
𝑳𝑫𝒇 𝒙 − 𝑳𝑫𝒇(𝒚𝒊

+) + 𝑳𝑫𝒇 𝒙 − 𝑳𝑫𝒇(𝒚𝒊
−)

𝑳𝑫𝒇(𝒙)
.

The ratio 𝑹𝑳
𝒏 of neighboring orbits’ LDs:

𝑹𝑳
𝒏(𝒙) = 𝟏 −

𝟏

𝟐𝒏
෍

𝒊=𝟏

𝒏
𝑳𝑫𝒇 𝒚𝒊

+ + 𝑳𝑫𝒇(𝒚𝒊
−) 

𝑳𝑫𝒇(𝒙)
.



Application: Hénon-Heiles system

chaotic orbit

regular orbit



Application: Hénon-Heiles system
Variation of LDs with 

regard to initial 

conditions. 

regular regions: smooth

chaotic regions: erratic
[also see Montes et al., 

Commun. Nonlin. Sci. Num. 

Simul. (2021)]

H=1/8

LDs for τ=103

SALI for τ=106 

(inset τ=103)



Application: Hénon-Heiles system

𝑫𝑳
𝟐 SALI𝑹𝑳

𝟐

Misclassified orbits (< 10%)

𝑫𝑳
𝟐 𝑹𝑳

𝟐



Application: 2D Standard map

𝑫𝑳
𝟐 SALI𝑹𝑳

𝟐

𝑫𝑳
𝟐 𝑹𝑳

𝟐

𝒙𝟏
′ = 𝒙𝟏 + 𝒙𝟐

′

𝒙𝟐
′ = 𝒙𝟐 +

𝑲

𝟐𝝅
 𝐬𝐢𝐧(𝟐𝝅𝒙𝟏)

(𝒎𝒐𝒅 𝟏)

We set 𝑲 = 𝟏. 𝟓

Thresholds: 𝐥𝐨𝐠𝟏𝟎 𝑫𝑳
𝟐 = −𝟐. 𝟑, 𝐥𝐨𝐠𝟏𝟎 𝑹𝑳

𝟐 = −𝟑 (𝑻 = 𝟏𝟎𝟑) 

𝐥𝐨𝐠𝟏𝟎 𝐒𝐀𝐋𝐈 = −𝟏𝟐 (𝑻 = 𝟏𝟎𝟓)



Effect of grid spacing (σ) and final 

integration time (T, τ)

Main plots: 2D Standard map

Insets: Hénon-Heiles system PA : percentage of correctly characterized orbits

𝑫𝑳
𝟐 𝑹𝑳

𝟐



Application: Hénon-Heiles system
A quantity related to the second spatial derivative of the LDs was introduced in 

Daquin et al., Physica D (2022) and was used in Hillebrand et al., Chaos (2022): 

𝚫𝑳𝑫 (𝒙) =
𝑳𝑫𝒇 𝒚𝒊

+ − 𝟐𝑳𝑫𝒇 𝒙 + 𝑳𝑫𝒇(𝒚𝒊
−)

𝝈𝟐
.

In Zimper et al., Physica D (2023) it was modified to: 

𝑺𝑳
𝒏 𝒙 =

𝟏

𝒏
෍

𝒊=𝟏

𝒏
𝑳𝑫𝒇 𝒚𝒊

+ − 𝟐𝑳𝑫𝒇 𝒙 + 𝑳𝑫𝒇 𝒚𝒊
−

𝝈(𝒊) 𝟐
.



Application: 4D Standard map
𝒙𝟏

′ = 𝒙𝟏 + 𝒙𝟐
′

𝒙𝟐
′ = 𝒙𝟐 +

𝑲

𝟐𝝅
 𝐬𝐢𝐧 𝟐𝝅𝒙𝟏 −

𝑩

𝟐𝝅
𝐬𝐢𝐧 𝟐𝝅 𝒙𝟑 − 𝒙𝟏

𝒙𝟑
′ = 𝒙𝟑 + 𝒙𝟒

′

𝒙𝟒
′ = 𝒙𝟒 +

𝑲

𝟐𝝅
 𝐬𝐢𝐧 𝟐𝝅𝒙𝟑 −

𝑩

𝟐𝝅
𝐬𝐢𝐧 𝟐𝝅 𝒙𝟏 − 𝒙𝟑

(𝒎𝒐𝒅 𝟏)



Application: 4D Standard map
2D subspace (𝒙𝟏, 𝒙𝟐) with 𝒙𝟑 = 𝟎. 𝟓𝟒, 𝒙𝟒 = 𝟎. 𝟎𝟏 for 𝑲 = 𝟏. 𝟓, 𝑩 = 𝟎. 𝟎𝟓 and 𝑻 = 𝟏𝟎𝟑

𝑫𝑳
𝟐 𝑹𝑳

𝟐 𝑺𝑳
𝟐



Application: 4D Standard map



Summary
✓ We introduced and successfully implemented computationally 

efficient ways to effectively identify chaos in conservative 

dynamical systems from the values of LDs at neighboring initial 

conditions. 

✓ From the distributions of the indices’ values we determine 

appropriate threshold values, which allow the characterization 

of orbits as regular or chaotic.

✓ All indices faced problems in correctly revealing the nature of 

some orbits mainly at the borders of stability islands.

✓ All indices show overall very good performance, as their 

classifications are in accordance with the ones obtained by the 

SALI at a level of at least 90% agreement.

✓ Advantages:

• Easy to compute (actually only the forward LDs are needed).

• No need to know and to integrate the variational equations.
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